Model Gallery

908 models from 1 repositories

Filter by type:

Filter by tags:

nanbeige4.1-3b-q8
Nanbeige4.1-3B is built upon Nanbeige4-3B-Base and represents an enhanced iteration of our previous reasoning model, Nanbeige4-3B-Thinking-2511, achieved through further post-training optimization with supervised fine-tuning (SFT) and reinforcement learning (RL). As a highly competitive open-source model at a small parameter scale, Nanbeige4.1-3B illustrates that compact models can simultaneously achieve robust reasoning, preference alignment, and effective agentic behaviors. Key features: Strong Reasoning: Capable of solving complex, multi-step problems through sustained and coherent reasoning within a single forward pass, reliably producing correct answers on benchmarks like LiveCodeBench-Pro, IMO-Answer-Bench, and AIME 2026 I. Robust Preference Alignment: Outperforms same-scale models (e.g., Qwen3-4B-2507, Nanbeige4-3B-2511) and larger models (e.g., Qwen3-30B-A3B, Qwen3-32B) on Arena-Hard-v2 and Multi-Challenge. Agentic Capability: First general small model to natively support deep-search tasks and sustain complex problem-solving with >500 rounds of tool invocations; excels in benchmarks like xBench-DeepSearch (75), Browse-Comp (39), and others.

Repository: localaiLicense: apache-2.0

nanbeige4.1-3b-q4
Nanbeige4.1-3B is built upon Nanbeige4-3B-Base and represents an enhanced iteration of our previous reasoning model, Nanbeige4-3B-Thinking-2511, achieved through further post-training optimization with supervised fine-tuning (SFT) and reinforcement learning (RL). As a highly competitive open-source model at a small parameter scale, Nanbeige4.1-3B illustrates that compact models can simultaneously achieve robust reasoning, preference alignment, and effective agentic behaviors. Key features: Strong Reasoning: Capable of solving complex, multi-step problems through sustained and coherent reasoning within a single forward pass, reliably producing correct answers on benchmarks like LiveCodeBench-Pro, IMO-Answer-Bench, and AIME 2026 I. Robust Preference Alignment: Outperforms same-scale models (e.g., Qwen3-4B-2507, Nanbeige4-3B-2511) and larger models (e.g., Qwen3-30B-A3B, Qwen3-32B) on Arena-Hard-v2 and Multi-Challenge. Agentic Capability: First general small model to natively support deep-search tasks and sustain complex problem-solving with >500 rounds of tool invocations; excels in benchmarks like xBench-DeepSearch (75), Browse-Comp (39), and others.

Repository: localaiLicense: apache-2.0

nemo-parakeet-tdt-0.6b
NVIDIA NeMo Parakeet TDT 0.6B v3 is an automatic speech recognition (ASR) model from NVIDIA's NeMo toolkit. Parakeet models are state-of-the-art ASR models trained on large-scale English audio data.

Repository: localaiLicense: apache-2.0

voxtral-mini-4b-realtime
Voxtral Mini 4B Realtime is a speech-to-text model from Mistral AI. It is a 4B parameter model optimized for fast, accurate audio transcription with low latency, making it ideal for real-time applications. The model uses the Voxtral architecture for efficient audio processing.

Repository: localaiLicense: apache-2.0

moonshine-tiny
Moonshine Tiny is a lightweight speech-to-text model optimized for fast transcription. It is designed for efficient on-device ASR with high accuracy relative to its size.

Repository: localaiLicense: apache-2.0

whisperx-tiny
WhisperX Tiny is a fast and accurate speech recognition model with speaker diarization capabilities. Built on OpenAI's Whisper with additional features for alignment and speaker segmentation.

Repository: localaiLicense: mit

voxcpm-1.5
VoxCPM 1.5 is an end-to-end text-to-speech (TTS) model from ModelBest. It features zero-shot voice cloning and high-quality speech synthesis capabilities.

Repository: localaiLicense: apache-2.0

neutts-air
NeuTTS Air is the world's first super-realistic, on-device TTS speech language model with instant voice cloning. Built on a 0.5B LLM backbone, it brings natural-sounding speech, real-time performance, and speaker cloning to local devices.

Repository: localaiLicense: apache-2.0

vllm-omni-z-image-turbo
Z-Image-Turbo via vLLM-Omni - A distilled version of Z-Image optimized for speed with only 8 NFEs. Offers sub-second inference latency on enterprise-grade H800 GPUs and fits within 16GB VRAM. Excels in photorealistic image generation, bilingual text rendering (English & Chinese), and robust instruction adherence.

Repository: localaiLicense: apache-2.0

vllm-omni-wan2.2-t2v
Wan2.2-T2V-A14B via vLLM-Omni - Text-to-video generation model from Wan-AI. Generates high-quality videos from text prompts using a 14B parameter diffusion model.

Repository: localaiLicense: apache-2.0

vllm-omni-wan2.2-i2v
Wan2.2-I2V-A14B via vLLM-Omni - Image-to-video generation model from Wan-AI. Generates high-quality videos from images using a 14B parameter diffusion model.

Repository: localaiLicense: apache-2.0

vllm-omni-qwen3-omni-30b
Qwen3-Omni-30B-A3B-Instruct via vLLM-Omni - A large multimodal model (30B active, 3B activated per token) from Alibaba Qwen team. Supports text, image, audio, and video understanding with text and speech output. Features native multimodal understanding across all modalities.

Repository: localaiLicense: apache-2.0

vllm-omni-qwen3-tts-custom-voice
Qwen3-TTS-12Hz-1.7B-CustomVoice via vLLM-Omni - Text-to-speech model from Alibaba Qwen team with custom voice cloning capabilities. Generates natural-sounding speech with voice personalization.

Repository: localaiLicense: apache-2.0

ace-step-turbo
ACE-Step 1.5 Turbo is a music generation model that can create music from text descriptions, lyrics, or audio samples. Supports both simple text-to-music and advanced music generation with metadata like BPM, key scale, and time signature.

Repository: localaiLicense: mit

qwen3-coder-next-mxfp4_moe
The model is a quantized version of **Qwen/Qwen3-Coder-Next** (base model) using the **MXFP4** quantization scheme. It is optimized for efficiency while retaining performance, suitable for deployment in applications requiring lightweight inference. The quantized version is tailored for specific tasks, with parameters like temperature=1.0 and top_p=0.95 recommended for generation.

Repository: localai

deepseek-ai.deepseek-v3.2
This is a quantized version of the DeepSeek-V3.2 model by deepseek-ai, optimized for efficient deployment. It is designed for text generation tasks and supports the pipeline tag `text-generation`. The model is based on the original DeepSeek-V3.2 architecture and is available for use in various applications. For more details, refer to the [official repository](https://github.com/DevQuasar/deepseek-ai.DeepSeek-V3.2-GGUF).

Repository: localai

z-image-diffusers
Z-Image is the foundation model of the ⚡️-Image family, engineered for good quality, robust generative diversity, broad stylistic coverage, and precise prompt adherence. While Z-Image-Turbo is built for speed, Z-Image is a full-capacity, undistilled transformer designed to be the backbone for creators, researchers, and developers who require the highest level of creative freedom.

Repository: localaiLicense: apache-2.0

z-image-turbo-diffusers
🚀 Z-Image-Turbo – A distilled version of Z-Image that matches or exceeds leading competitors with only 8 NFEs (Number of Function Evaluations). It offers ⚡️sub-second inference latency⚡️ on enterprise-grade H800 GPUs and fits comfortably within 16G VRAM consumer devices. It excels in photorealistic image generation, bilingual text rendering (English & Chinese), and robust instruction adherence.

Repository: localaiLicense: apache-2.0

glm-4.7-flash-derestricted
This model is a quantized version of the original GLM-4.7-Flash-Derestricted model, derived from the base model `koute/GLM-4.7-Flash-Derestricted`. It is designed for restricted use, featuring tags like "derestricted," "uncensored," and "unlimited." The quantized versions (e.g., Q2_K, Q4_K_S, Q6_K) offer varying trade-offs between accuracy and efficiency, with the Q4_K_S and Q6_K variants being recommended for balanced performance. The model is optimized for fast inference and supports multiple quantization schemes, though some advanced quantization options (like IQ4_XS) are not available. It is intended for use in environments with specific constraints or restrictions.

Repository: localai

qwen3-tts-1.7b-custom-voice
Qwen3-TTS is a high-quality text-to-speech model supporting custom voice, voice design, and voice cloning.

Repository: localaiLicense: apache-2.0

qwen3-tts-0.6b-custom-voice
Qwen3-TTS is a high-quality text-to-speech model supporting custom voice, voice design, and voice cloning.

Repository: localaiLicense: apache-2.0

Page 1